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Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor
for anxiety disorders. There are few examples of naturally occurring animal models of impaired extinction. The present study compared
fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The
phenotypic specificity of this deficit was evaluated by comparing 129S1 and C57BL/6J for one-trial and multitrial fear conditioning,
nociception, and extinction of conditioned taste aversion and an appetitive instrumental response. 129S1 were tested for sensitivity to the
extinction-facilitating effects of extended training, as well as D-cycloserine and yohimbine treatment. To elucidate the neural basis of
impaired 129S1 fear extinction, c-Fos and Zif268 expression was mapped after extinction recall. Results showed that impaired fear
extinction in 129S1 was unrelated to altered fear conditioning or nociception, and was dissociable from intact appetitive extinction.
Yohimbine treatment facilitated extinction in 129S1, but neither extended extinction training nor D-cycloserine treatment improved
129S1 extinction. After extinction recall, 129S1 showed reduced c-Fos and Zif268 expression in the infralimbic cortex and basolateral
amygdala, and elevated c-Fos or Zif268 expression in central nucleus of the amygdala and medial paracapsular intercalated cell mass,
relative to C57BL/6J. Collectively, these data demonstrate a deficit in fear extinction in 129S1 associated with a failure to properly engage
corticolimbic extinction circuitry. This common inbred strain provides a novel model for studying impaired fear extinction in anxiety
disorders.
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Introduction
Fear extinction is a form of learning in which the expression of a
conditioned fear response is reduced after repeated experience of
a conditioned stimulus in the absence of an unconditioned aver-
sive stimulus (Pavlov, 1927). There is growing evidence that fear
conditioning and fear extinction are independent forms of learn-
ing that are mediated by partially dissociable neural mechanisms
(Kamprath and Wotjak, 2004; Quirk and Mueller, 2007; Myers
and Davis, 2007). Fear conditioning and short-term extinction
appear to be principally amygdala-mediated, whereas the ability
to form and express extinction memory over the long term re-
cruits the rodent ventromedial prefrontal cortex and homolo-

gous regions in the human brain (Maren and Quirk, 2004; Phelps
et al., 2004).

At the molecular level, extinction acquisition deficits are
caused, for example, by upregulation of cyclin-dependent kinase
5 (Sananbenesi et al., 2007), L-type voltage-gated calcium chan-
nel blockers (Cain et al., 2002), overexpression of type I adenylyl
cyclase (Wang et al., 2004), metabotropic glutamate mGluR1 an-
tagonism (Kim et al., 2007a), or cannabinoid receptor CB-1 in-
activation (Marsicano et al., 2002; Chhatwal et al., 2005), whereas
extinction facilitation is produced, for instance, by NMDA recep-
tor (NMDAR) partial agonism (Davis et al., 2006), metabotropic
glutamate mGluR7 activation (Fendt et al., 2008), histone
deacetylase inhibition (Lattal et al., 2007), dopamine D2 receptor
antagonism (Ponnusamy et al., 2005), cyclin-dependent kinase 5
inactivation (Hawasli et al., 2007), protein kinase A inhibition
(Isiegas et al., 2006), AMPA receptor potentiating (Zushida et al.,
2007), or noradrenaline (Ouyang and Thomas, 2005; Berlau and
McGaugh, 2006) or �2-adrenoreceptor antagonism (Cain et al.,
2004). In addition, the mitogen-activated protein kinase
(MAPK) signaling pathway is activated in the amygdala of rats
and mice during fear extinction (Lu et al., 2001; Lin et al.,
2003a,b; Chen et al., 2005; Herry et al., 2006), whereas preextinc-
tion intraamygdala administration of MAPK or inhibitors im-
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pairs fear extinction (Lu et al., 2001; Lin et al., 2003b; Herry et al.,
2006).

Fear extinction is readily quantifiable in laboratory rodents,
providing important behavioral models for translational studies
of anxiety disorders (Cryan and Holmes, 2005; Quirk and Beer,
2006). Such models can be applied in a variety of ways; for exam-
ple, phenotypic surveys of mouse inbred strains provide a valu-
able approach to identifying genetically associated variation in
behavior and neural circuitry (Wahlsten et al., 2006). To date,
however, the majority of inbred mouse studies of fear extinction
have used the commonly used C57BL/6 inbred strain or related
substrains (Radulovic et al., 1998; Stiedl et al., 1999; Siegmund et
al., 2005), and there has been limited study of potential strain
differences in fear extinction (Falls et al., 1997; Stiedl et al., 1999;
McCaughran et al., 2000; Waddell et al., 2004). Therefore, in the
present study, we conducted a survey of fear extinction across a
panel of inbred mouse strains. This identified the 129S1 strain as
exhibiting a significant deficit in fear extinction. We went on to
determine the behavioral specificity of this extinction deficit, and
the sensitivity of this strain to putative extinction-facilitating be-
havioral and pharmacological interventions. Next, we sought to
elucidate the neural basis of the fear extinction impairment in the
129S1 strain by quantifying extinction-induced activation of the
immediate-early genes (IEGs) in a cortico-amygdala circuit me-
diating fear extinction across species (Paré et al., 2004; Phelps et
al., 2004; Milad et al., 2006; Wellman et al., 2007). Both c-Fos and
Zif268 were measured, given previous evidence that these IEGs
show differential patterns of extinction-induced activation
(Herry and Mons, 2004). The results reveal a model of impaired
fear extinction in a common inbred strain associated with a fail-
ure to recruit the key neural circuitry necessary for extinction.

Materials and Methods
Subjects. Subjects were male 129S1/SvImJ, A/J, BALB/cByJ, C57BL/6J,
DBA/2J, and FVB/NJ strains. These strains were chosen on the basis of
their frequent use in behavioral neuroscience, including as genetic back-
grounds for mutants and inclusion as “group A” priority strains in the
Mouse Phenome Project, an international effort to provide the biomed-
ical research community with phenotypic data on the most commonly
used mouse strains (www.jax.org/phenome). For experiments con-
ducted at the National Institutes of Health, mice were obtained at �8
weeks of age from The Jackson Laboratory and housed (two to four per
cage) side-by-side in a temperature (22 � 1°C)- and humidity (45 �
15%)-controlled vivarium under a 12 h light/dark cycle (lights on, 6:00
A.M.). The IEG activation experiments were conducted in Innsbruck.
These mice were obtained from Charles River and housed (four to five
per cage) side-by-side in a temperature (22 � 2°C)- and humidity (50 –
60%)-controlled vivarium under a 12 h light/dark cycle (lights on, 7:00
A.M.). The number of mice used in each experiment is given in the figure
legends. All experimental procedures were approved by the National
Institute on Alcohol Abuse and Alcoholism Animal Care and Use and
Austrian Ethical Committees on Animal Care and Use (Bundesministe-
rium für Wissenschaft und Forschung) and followed the National Insti-
tutes of Health guidelines outlined in Using Animals in Intramural Re-
search and the local animal care and use committees.

Strain survey of fear extinction. Fear extinction was assessed based on
methods described previously (Izquierdo et al., 2006a). Mice were moved
to a holding room adjacent to the test room and acclimated for 1 h before
testing. Fear conditioning was conducted in a 27 � 27 � 11 cm chamber
with transparent walls and a metal rod floor, cleaned with a 79.5% water/
19.5% ethanol/1% vanilla extract solution to provide a distinctive olfac-
tory cue. After 180 s, mice received three pairings (60 –120 s variable
interpairing interval) between a 30 s, 80 dB, 3 kHz tone [conditioned
stimulus (CS)] and a 2 s, 0.6 mA scrambled footshock [unconditioned
stimulus (US)], in which the shock was presented during the last 2 s of the
CS. There was a 120 s no-stimulus consolidation period after the final

US–CS pairing before mice were returned to the home cage. Stimulus
presentation was controlled by the MED Associates VideoFreeze system.

Twenty-four hours later, initial fear recall and within-session fear ex-
tinction were tested. Mice were placed in a novel context (black/white-
checkered walls, solid-Plexiglas, opaque floor, cleaned with a 70% etha-
nol/30% water solution), housed in a different room from conditioning.
After 180 s, there were 50 � 30 s CS presentations (5 s no-stimulus
interval). Twenty-four hours later, extinction recall was tested using the
same procedure as the previous day.

Freezing was measured as an index of fear (Blanchard and Blanchard,
1969), and manually scored every 5 s as no visible movement except that
required for respiration and converted to a percentage [(number of
freezing observations/total number of observations) � 100]. Freezing
during conditioning was measured during the baseline period and each
of the three CS presentations. Freezing during extinction and extinction
recall was binned into 3� CS trial blocks.

Behavioral specificity of extinction deficit in the 129S1 strain. On the
basis of the strain comparison data revealing a marked deficit in fear
extinction in the 129S1 strain, we next assessed the behavioral specificity
of the deficit in this strain.

Fear conditioning. Failure of 129S1 to show extinction could result
from either an extinction deficit per se or an inability of an intact extinc-
tion memory to overcome an excessive fear memory. We therefore ex-
amined whether impaired fear extinction in 129S1 mice was dissociable
from an increase in fear. In one experiment, 129S1 (and for comparison,
C57BL/6J) mice were conditioned using the same three tone–shock pro-
tocol described above and, 24 h later, tested for fear recall via average
freezing over three CS presentations (Yang et al., 2008). Because three
tone–shock pairings during conditioning could conceivably produce
ceiling levels of fear during recall, an additional experiment was con-
ducted in the same manner with the exception that there was only one
tone–shock pairing during conditioning.

Nociception. To exclude the possibility that increased pain perception
could confound fear extinction, 129S1 (and for comparison, C57BL/6J)
mice were tested on the hot plate and Von Frey tests. The hot plate test
apparatus was a flat plate (Columbus Instruments) heated to 55°C on
which the mouse was placed (Boyce-Rustay and Holmes, 2006). The
latency to show a hindpaw shake or lick was manually timed, with a
maximum response latency of 30 s. For the Von Frey test, the threshold
value for hindpaw withdrawal in response to punctate mechanical stim-
ulation was measured with graded Von Frey filaments (Stoelting)
(Hasnie et al., 2007). Each mouse was given 2 min of acclimation to the
wire mesh cage and then tested on the right hindpaw. Threshold response
was defined by the filament that caused active paw withdrawal at least
three times for every five applications. There were two trials separated by
a 2 min interval (average � withdrawal threshold).

Extinction of appetitive instrumental response. We next evaluated ex-
tinction to a nonaversive, appetitively motivated form of learning. 129S1
(and for comparison, C57BL/6J) were tested for extinction of an instru-
mental response using a touchscreen-based operant system described
previously [for details of apparatus, see Izquierdo et al. (2006b) and
Brigman et al. (2008)]. Food-restricted mice were acclimated to the 14
mg pellet food reward and to eating the rewards from the pellet magazine.
Mice then underwent pavlovian autoshaping during which variously
shaped stimuli were presented in the touchscreen windows (one per
window) for 10 s [intertrial interval (ITI), 15 s]. The disappearance of the
stimuli coincided with provision of a single pellet food reward, and mice
were required to eat the pellet for the next trial to commence. The crite-
rion was eating 30 pellets in a 30 min session. There were then two stages
of operant shaping: (1) respond to a (variously shaped) stimulus that
appeared in one of the two windows (spatially pseudorandomized) and
remained on the screen until a response was made, (2) same as (1), plus
a new trial was initiated by a head entry into the pellet magazine. Crite-
rion for each shaping stage was 90% responding in a 30 trial session (15 s
ITI).

For the task proper, mice were required to respond to stimuli (1 � 2.8
cm 2 white square per window) to obtain reward. Stimuli remained on
the screen until a response was made, with 30 trials (5 s ITI) per session.
Criterion was performing 30 trials within 12.5 min on each of five con-

Hefner et al. • Mouse Fear Extinction J. Neurosci., August 6, 2008 • 28(32):8074 – 8085 • 8075



secutive sessions. Next, extinction of the re-
sponse was tested in sessions during which re-
sponses to the stimulus were no longer
rewarded. Criterion was a two session average
of 75% or more response omissions. The de-
pendent measure was the number of trials to
reach the acquisition and extinction criteria.

Extinction of conditioned taste aversion. To as-
sess whether impaired fear extinction occurred
in another test of extinction to an aversive
learning event, 129S1 (and for comparison,
C57BL/6J) were tested for extinction of a con-
ditioned taste aversion (CTA) as described pre-
viously (Jacobson et al., 2006). Singly housed
mice were first water-deprived and habituated
to drinking from two water-filled sipper tubes
offered in the cage for 30 min twice per day
(morning, evening) for 6 d. On day 7, mice were
offered only one tube, containing 0.5% saccha-
rin, during the morning presentation. Thirty
minutes after the 30 min presentation, mice
were given an intraperitoneal injection of 0.15
M LiCl in volume of 20 ml/kg (�0.30 M) and
observed for signs of malaise. Malaise was de-
fined as protracted periods of nonsleeping im-
mobility, piloerection, contraction of the
flanks, prostrate, flat belly, and elongated body
posture (mice displaying malaise were given a
score of 1). Mice were offered water during the
5:00 P.M. presentation to prevent excessive
dehydration.

Extinction was assessed over 13 daily ses-
sions. The procedure was the same as for habit-
uation days, except that mice were offered two
tubes, one containing 0.5% saccharin and one
containing water, for 40 min during each twice
daily presentation, with the left/right side of the
water- versus saccharin-containing tubes coun-
terbalanced across days and experimental
groups. A daily aversion index was calculated as
fluid consumed from water-contained tube/to-
tal fluid consumed from both tubes; with an
index score closer to 1.0 indicating maximum
aversion.

To assess unconditioned saccharin prefer-
ence, an additional experiment was conducted
in naive mice. Mice were tested as above with
the exception that LiCl was replaced with saline,
and saccharin preference was measured on days
8 –10 only.

Behavioral and pharmacological influences on fear extinction in 129S1.
We next conducted a series of experiments to test whether the extinction
deficit in 129S1 mice was rescued by behavioral or pharmacological
manipulations.

Extended massed-trial extinction. To examine whether 129S1 mice
would demonstrate extinction over an extended massed-trial extinction
protocol, mice were tested on a 100 trial extinction protocol followed by
a 50 trial extinction recall protocol.

Effects of D-cycloserine treatment. Systemic treatment with the NMDAR
partial agonist D-cycloserine facilitates fear extinction in rodents and has
proven to be effective as an adjunct to exposure therapy in human anxiety
disorders (Davis et al., 2006). We therefore assessed the ability of
D-cycloserine to facilitate impaired extinction in 129S1 mice. 129S1 mice
underwent three tone–shock conditioning as above and, 24 h later,
treated with saline vehicle or 5, 15, or 30 mg/kg (injected intraperitone-
ally in a volume of 10 ml/kg body) D-cycloserine (Sigma-Aldrich) 30 min
before 50 trial extinction testing. Mice were tested, drug-free, 24 h later
for fear via average freezing over 3� tone presentations. Because the
effects of D-cycloserine have not been demonstrated in our fear extinc-

tion paradigm in C57BL/6J, we also tested the drug in this strain. Doses
were chosen based on extinction facilitating doses of D-cycloserine in rats
and humans (Walker et al., 2002; Ressler et al., 2004; Richardson et al.,
2004).

Effects of yohimbine treatment. Systemic treatment with the �2-
adrenoreceptor antagonist yohimbine has been shown to improve fear
extinction in mice (Cain et al., 2004). We therefore also tested the effects
of this drug in 129S1 mice. The procedure was the same as for
D-cycloserine. Doses of 2.5 and 5 mg/kg yohimbine (Sigma-Aldrich)
were chosen based on extinction facilitating doses of the drug in
C57BL/6J mice (Cain et al., 2004).

Extinction-related cortico-amygdala IEG activation. We next sought to
identify neural correlates of the extinction deficit in 129S1 using IEG
expression as a marker for neuronal activity (Singewald, 2007). The focus
of this analysis was a prefrontal cortex–amygdala circuit that has been
consistently shown to be recruited during extinction in rodents and hu-
mans (Paré et al., 2004; Phelps et al., 2004; Quirk et al., 2006). For these
experiments, 129S1 were compared with C57BL/6J. Mice underwent fear
conditioning in a 26 � 30 � 32 cm chamber with transparent walls and
a metal rod floor. After 120 s, mice received five pairings (120 s interpair-
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Figure 1. Survey of fear extinction across inbred strains. All strains except 129S1 showed a significant reduction in conditioned
fear over at least one extinction session. Cond, Conditioning; Ext recall, extinction recall. n � 7–14/strain. *p � 0.05, significant
change over trials. Data in Figures 1–7 are means � SEM.
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ing interval) between a 120 s, 80 dB white noise and a 2 s, 0.7 mA scram-
bled footshock, in which the shock was presented during the last 2 s of the
tone. There was a 120 s no-stimulus consolidation period after the final
tone–shock pairing before mice were returned to the home cage. A non-
conditioned control group (“CS minus baseline”) underwent the same
procedure except there was no footshock exposure. Stimulus presenta-
tion was controlled by the Habitest operant system (Coulbourn Instru-
ments). Twenty-four hours later, mice were placed in a novel context
(26 � 20 � 13 cm cage, cleaned with a 100% ethanol, illuminated to 10
lux) for a 120 s acclimation period and then exposed to 15 � 120 s tone
presentations (5 s no-stimulus interval). Twenty-four hours later, mice
were returned to the novel context, exposed (after a 120 s acclimation
period) to 15 � 120 s tone presentations, and killed for immediate-early
gene analysis 2 h after the start of the session [time interval according to
postextinction c-Fos and Zif268 data obtained by Herry and Mons
(2004)].

For IEG analysis, mice were deeply anesthetized with an overdose of
sodium pentobarbital (200 mg/kg) and transcardially perfused with 20
ml of 0.9% saline followed by 20 ml of 4% paraformaldehyde in 0.1 mol/L
PBS, pH 7.4. Brains were then removed and postfixed at 4°C overnight in
4% paraformaldehyde in PBS. Coronal sections (50 �m) were cut with a
vibratome (Ted Pella) and collected in immunobuffer. The sections were
processed for (1) c-Fos immunoreactivity as described previously
(Singewald et al., 2003), via incubation with a polyclonal primary anti-
body (1:20,000; sc-52; Santa Cruz Biotechnology), and (2) Zif268-like
immunoreactivity via incubation with a polyclonal primary antibody
(1:5000; sc-189; Santa Cruz Biotechnology) and a biotinylated goat anti-
rabbit secondary antibody (1:200; Vector Laboratories). Cells containing
a nuclear brown-black reaction product were considered to be c-Fos-
positive or Zif268-positive cells, respectively. The anatomical localiza-
tion of c-Fos-positive or Zif268-positive cells was aided by using the
illustrations in a stereotaxic atlas (Paxinos and Franklin, 2001). Zif268-
positive neurons in intercalated (ITC) cell masses were identified with
reference to published studies in the rat and mouse (Millhouse, 1986;
Berretta et al., 2005; Marowsky et al., 2005; Geracitano et al., 2007). One
mass of ITC cells situated along the external capsule at the junction of
lateral nucleus of the amygdala (LA) and the basolateral nucleus of the
amygdala (BLA) was identified as lateral paracapsular ITC neurons (Ilp).
A second mass of ITC cells was observed along the intermediate capsule
at the junction of LA/BLA and lateral to the central nucleus of the amyg-
dala (CeA) and was defined as the medial paracapsular ITC mass (Imp)
(see Fig. 7A). Aiding the identification of ITC cell masses, the size of
Zif268-labeled nuclei in the masses was considerably smaller than those
in the adjacent BLA and CeA (ITCs, 21.9 � 3.3 �m 2; BLA, 45.2 � 3.0;
CeA, 40.5 � 3.8; one-factor ANOVA, F(2,60) � 102.98, p � 0.01; Bonfer-
roni’s post hoc comparisons, p � 0.01). Unless otherwise stated, all c-Fos-
positive or Zif268-positive cells that were distinguishable from back-
ground staining were bilaterally counted in each region of interest within
a defined area (0.01 mm 2) averaging counts from two to four sections per
mouse depending on the brain area under investigation.

Fear-related cortico-amygdala IEG activation. To test for possible strain
differences in immediate-early gene activation after fear recall per se, an
additional control experiment was conducted. 129S1 and C57BL/6J mice
were conditioned as above for extinction-related immediate-early gene
analysis and, 24 h later, exposed to 1 � 30 s tone presentation before
being killed and processed for immediate-early gene analysis 2 h later, as
above.

Statistics. The effects of strain � tone-trial/block, session, or day on
freezing, instrumental responses, or taste aversion index were analyzed
using two-factor ANOVA, with repeated measures for tone-trial/block,
session, or day, followed by Bonferroni’s post hoc analysis. In the presence
of a significant interaction in this initial strain profile, within-session
strain profiles were either analyzed via separate repeated-measures
ANOVA. Effects of strain and condition on IEG expression after fear
recall were analyzed using unpaired t tests. Effects of strain by condition
on IEG expression after fear recall were analyzed using two-factor
ANOVA followed by Bonferroni’s post hoc analysis. Correlations be-
tween freezing during extinction recall and number of c-Fos and Zif268
cells were performed using the Spearman’s coefficient test. The threshold

for statistical significance was set at p � 0.05 (statistical results below this
threshold are not described).

Results
Strain survey of fear extinction
There was a significant strain � tone-trial/block interaction for
freezing during conditioning (F(15,186) � 3.43; p � 0.01), extinc-
tion (F(45,558) � 2.67; p � 0.01), and extinction recall (F(45,558) �
1.86; p � 0.01) sessions. For clarity, the profiles of each of the six
strains are presented separately in Figure 1. During conditioning,
all strains showed a significant increase in freezing across trials
(all p � 0.01) with the exception of A/J, which had high baseline
freezing. During extinction, DBA/2J, FVB/NJ, BALB/cByJ, and
C57BL/6J showed a significant decrease in freezing across trial-
blocks (all p � 0.01). Neither A/J nor 129S1 showed a significant
decrease in freezing during the extinction session. All strains (all
p � 0.01) except 129S1 displayed a significant decrease in freezing
during the extinction recall session.

Behavioral specificity of extinction deficit in the 129S1 strain
Fear conditioning
There were no differences between 129S1 and C57BL/6J in fear
recall after either 3� tone–shock (Fig. 2A, right) or 1� tone–
shock (Fig. 2A, left) conditioning protocols.

Nociception
Neither hot plate response latencies (Fig. 2B, left) nor Von Frey
responses (Fig. 2B, right) differed between 129S1 and C57BL/6J.

Extinction of appetitive instrumental behavior
There was no significant effect of strain for trials to extinguish the
instrumental behavior (129S1, 130 � 18 trials; C57BL/6J, 120 �
7 trials) (sessions 1–5 are shown in Fig. 3A). There was a signifi-
cant effect of strain for trials to acquire an appetitively driven
instrumental response behavior (F(1,18) � 4.70; p � 0.05) because
of faster learning in 129S1 (8.7 � 1.4 trials to criterion) than
C57BL/6J (13.4 � 1.6 trials to criterion).

Extinction of conditioned taste aversion
There was a significant strain by day interaction for aversion
index during CTA extinction (F(12,192) � 2.92; p � 0.01). The
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aversion index in C57BL/6J was significantly higher than in 129S1
during the first two sessions ( p � 0.01), and there was a signifi-
cant decrease in the aversion index across sessions in C57BL/6J
(F(12,96) � 17.26; p � 0.01) but not 129S1 (Fig. 3B). Malaise scores
were no different between strains (129S1 � 0.58 � 0.11; C57BL/
6J � 0.47 � 0.12). Unconditioned C57BL/6J showed a clear pref-
erence for saccharin over water (80 � 4.4% preference), whereas
unconditioned 129S1 showed no preference (49 � 5.9% prefer-
ence) (n � 7/strain).

Behavioral and pharmacological influences on fear extinction
in 129S1
Extended massed-trial extinction
129S1 showed no decrease in freezing over two sessions in an
extended massed-trial protocol (Fig. 4A).

Effects of D-cycloserine
There was no significant effect of D-cycloserine treatment on
freezing during extinction recall in 129S1 mice (Fig. 4B).
D-Cycloserine treatment significantly reduced freezing during
extinction recall in C57BL/6J mice (F(3,49) � 2.80, p � 0.05; ve-
hicle, 72.0 � 6.2%; 5 mg/kg, 50.7 � 6.4%; 15 mg/kg, 52.6 � 4.8%;
30 mg/kg, 53.1 � 6.0%; p � 0.05, all doses vs vehicle; n �
12–14/dose).

Effects of yohimbine
There was a significant effect of yohimbine treatment on freezing
during extinction recall (F(2,26) � 5.16; p � 0.05). Mice previ-

ously treated with either 2.5 or 5.0 mg/kg showed significantly
less freezing than vehicle-treated controls (Fig. 4C).

Extinction-related cortico-amygdala IEG activation
129S1 showed significantly more freezing than C57BL/6J over the
extinction recall session (129S1, 65.3 � 1.6%; C57BL/6J, 4.5 �
0.9%; t(13) � 12.58; p � 0.01) and the first tone presentation per
se (129S1, 74.0 � 5.4%; C57BL/6J, 23.8 � 5.1%; t(13) � 6.72; p �
0.01). There was a significant strain by condition interaction for
the number of c-Fos-positive cells in the infralimbic cortex (IL)
(1.78 mm from bregma, F(1,19) � 34.55, p � 0.01; 1.54 mm from
bregma, F(1,19) � 9.47, p � 0.01), the basolateral (F(1,19) � 38.43;
p � 0.01) and central nucleus (F(1,19) � 15.72; p � 0.01) of the
amygdala. Although all three regions show higher c-Fos expres-
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sion after extinction recall relative to CS minus baseline control
levels in both strains, after extinction recall 129S1 mice exhibited
fewer c-Fos-positive cells in the infralimbic cortex (Fig. 5A) and
basolateral amygdala (Fig. 5B), and more positive cells in the
central amygdala (Fig. 5C) than C57BL/6J. The cingulate cortex
(1.78 mm from bregma, F(1,19) � 68.24, p � 0.01; 1.54 mm from
bregma, F(1,19) � 177.56, p � 0.01; 1.10 mm from bregma, F(1,19)

� 143.48, p � 0.01), prelimbic cortex (1.78 mm from bregma,
F(1,19) � 220.43, p � 0.01; 1.54 mm from bregma, F(1,19) �
149.06, p � 0.01), lateral amygdala (F(1,19) � 35.77; p � 0.01),
medial posterodorsal (F(1,19) � 91.49; p � 0.01), medial pos-
teroventral (F(1,19) � 58.73; p � 0.01), anterior cortical (F(1,19) �
47.57; p � 0.01), and posterolateral cortical (F(1,19) � 58.88; p �
0.01) regions all expressed significantly more c-Fos-positive cells
after extinction recall than after CS minus baseline conditions but
did not differ between strains (Table 1). No other brain regions
examined were significantly affected by condition or strain (Ta-
ble 1).

There was a significant strain by condition interaction for the
number of Zif268-positive cells in the infralimbic cortex (1.78
mm from bregma, F(1,19) � 30.74, p � 0.01; 1.54 mm from
bregma, F(1,19) � 14.32, p � 0.01), the lateral (F(1,19) � 17.22; p �
0.01) and basolateral nuclei of the amygdala (F(1,19) � 33.97; p �
0.01), and the Imp ITC mass (F(1,19) � 23.80; p � 0.01). Although
these five regions show higher Zif268 expression after extinction
recall relative to CS minus baseline control levels in both strains,
after extinction recall 129S1 mice exhibited fewer Zif268-positive
cells in the infralimbic cortex (Fig. 6A) and lateral amygdala (Fig.
6B), and more positive cells in Imp (Fig. 7B) than C57BL/6J. The

secondary motor (F(1,19) � 153.97; p � 0.01), cingulate cortex
(1.78 mm from bregma, F(1,19) � 109.96, p � 0.01; 1.10 mm from
bregma, F(1,19) � 8.88, p � 0.01), prelimbic cortex (1.78 mm
from bregma, F(1,19) � 97.41, p � 0.01; 1.54 mm from bregma,
F(1,19) � 77.67, p � 0.01), central nucleus (F(1,19) � 72.11; p �
0.01), Ilp ITC mass (F(1,19) � 34.25; p � 0.01), medial pos-
terodorsal (F(1,19) � 155.19; p � 0.01), medial posteroventral
(F(1,19) � 62.88; p � 0.01), and posterolateral cortical (F(1,19) �
49.56; p � 0.01) regions all expressed significantly more Zif268-
positive cells after extinction recall than after CS minus baseline
but did not differ between strains (Table 2). No other brain re-
gions examined were significantly affected by condition or strain
(Table 2).

Correlational analysis of the whole sample (i.e., both strains)
revealed a significant negative correlation between percentage
freezing during first tone presentation during extinction recall
and the number of c-Fos-positive (�0.83, p � 0.01, 1.74 mm
from bregma; �0.75, p � 0.01, 1.54 mm from bregma) (Fig. 5D)
and Zif268-positive (�0.77, p � 0.01, 1.74 mm from bregma;
�0.80, p � 0.01, 1.54 mm from bregma) (Fig. 6D) cells in the
infralimbic cortex. Significant negative correlation was also ob-
served between extinction recall freezing and c-Fos (�0.75; p �
0.01)- and Zif268 (�0.77; p � 0.01)-positive cells in the basolat-
eral amygdala, as well as Zif268-positive cells in the lateral amyg-
dala (�0.79; p � 0.01). Finally, there was a significant positive
correlation between extinction recall freezing and the number of
c-Fos-positive cells in the central amygdala (0.87; p � 0.01) and
the number of Zif268-positive cells in the medial paracapsular
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Figure 5. c-Fos expression after extinction recall. A, 129S1 (S1) mice showed a lesser increase (relative to CS minus baseline) in c-Fos-positive cells in the IL than C57BL/6J (B6) after extinction
recall. B, S1 mice showed a lesser extinction-related increase in c-Fos-positive cells in the BLA than B6 after extinction recall. C, S1 mice showed a greater increase in c-Fos-positive cells in CeA than
B6 after extinction recall. D, The number of c-Fos-positive cells in IL (but not BLA or CeA) (see Results) was highly negatively correlated with freezing during extinction recall. n � 7– 8/strain for
extinction recall; n � 4/strain for baseline. cc, Correlation coefficient. Scale bars, 100 �m. **p � 0.01 129S1 versus B6; ##p � 0.01, #p � 0.05 versus baseline.
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ITC (0.80; p � 0.01) (Fig. 7C, Tables 1, 2). No other brain region
correlated significantly with freezing during extinction recall.

Fear-related cortico-amygdala IEG activation
129S1 and C57BL/6J did not significantly differ in freezing during
fear recall (129S1, 55.2 � 3.5%; C57BL/6J, 51.6 � 5.2%; NS).
There was no significant effect of strain on the number of either
c-Fos- or Zif268-positive cells in any brain region examined (Ta-
ble 3) (all NS) after fear recall.

Discussion
The major finding of the present study was the identification of a
significant and selective impairment in fear extinction in a com-
mon inbred mouse strain, 129S1/SvImJ (129S1). This phenotype
was associated with abnormal activation of a key prefrontal-
amygdala pathway mediating fear extinction.

Our initial strain survey was the broadest conducted to date
and revealed marked differences in fear extinction across inbred
strains. Although not the focus of our study, we observed strain
differences in the acquisition and expression of conditioned fear
per se, in line with previous reports comparing various strains
(Paylor et al., 1993, 1994; Fordyce et al., 1995; Caldarone et al.,
1997; Owen et al., 1997; Wehner et al., 1997; Gerlai, 1998; Val-
entinuzzi et al., 1998; Stiedl et al., 1999; Nguyen et al., 2000;
Bolivar et al., 2001; Balogh et al., 2002; Cook et al., 2002; Holmes
et al., 2002; Balogh and Wehner, 2003; Bothe et al., 2005). In
terms of extinction, DBA/2J, FVB/NJ, BALB/cByJ, and C57BL/6J
exhibited significant within-session extinction, albeit to varying
degrees. Of note, within-session extinction learning and
between-session extinction recall was modest and incomplete in
the reference strain, C57BL/6J, under these current test condi-

tions. This rate of extinction is comparable with that seen in other
laboratories using a similar 30 s tone massed fear conditioning
protocol (Herry et al., 2006) or a fear-potentiated startle para-
digm (Waddell et al., 2004), although lesser than that seen with
other conditioning protocols (Siegmund et al., 2005) and other
test conditions in our hands (Norcross et al., 2008).

Of the strains currently tested, the most striking extinction
profile was exhibited by the 129S1 strain. 129S1 showed no ap-
parent short-term extinction learning over 2 � 50 trial massed
extinction sessions and no long-term extinction recall. Although
A/J also showed poor within-session extinction, as previously
reported (Owen et al., 1997), these mice exhibited heightened
unconditioned freezing that confounded interpretation of their
extinction profile. In contrast, impaired extinction in 129S1 was
not an artifact of increased pain perception (assayed via hot plate
and Von Frey tests) or increased fear conditioned fear per se. This
was demonstrated by a lack of fear recall differences between
129S1 and C57BL/6J on a multiple tone–shock paradigms and, to
circumvent potential ceiling levels of freezing, a one tone–shock
paradigm. Normal fear conditioning in 129S1 is consistent with
the majority of previous reports comparing C57BL/6J and vari-
ous 129 substrains, including 129S1 (Owen et al., 1997; Nguyen et
al., 2000; Bolivar et al., 2001; Holmes et al., 2002; Balogh and
Wehner, 2003; Bothe et al., 2005; Schimanski and Nguyen, 2005).
Current data also showed that impaired fear extinction deficit in
129S1 did not extend to an appetitively driven conditioned in-
strumental response on touchscreen-based instrumental task (Iz-
quierdo et al., 2006b; Brigman et al., 2008). On another measure
of extinction to an aversive event (CTA) 129S1 again showed
poor extinction, but a low level of acquisition and an uncondi-
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Figure 6. Zif268 expression after extinction recall. A, 129S1 (S1) mice showed a lesser increase (relative to CS minus baseline) in Zif268-positive cells in the IL than C57BL/6J (B6) after extinction
recall. B, S1 mice showed a lesser increase in Zif268-positive cells in LA than B6 after extinction recall. C, S1 mice showed a lesser increase in Zif268-positive cells in the BLA than B6 after extinction
recall. D, Across strains, the number of Zif268-positive cells in IL (but not BLA or CeA) (see Results) was negatively correlated with freezing during extinction recall. n � 7– 8/strain for
extinction recall; n � 4/strain for baseline. cc, Correlation coefficient. Scale bar, 100 �m. **p � 0.01 129S1 versus B6; ##p � 0.01, #p � 0.05 versus baseline.
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tioned aversion to saccharin prevented clear interpretation of
CTA extinction. Together, these data demonstrate a selective def-
icit in the formation of fear extinction memory in 129S1.

Fear extinction in 129S1 was not improved by providing ad-
ditional massed extinction trials. Nor was it facilitated by treat-
ment with the partial NMDAR agonist D-cycloserine. This differs
from the extinction facilitating effects of D-cycloserine in condi-
tioned freezing or fear-potentiated startle paradigms in C57BL/6J
mice (Tomilenko and Dubrovina, 2007; current study), rats
(Walker et al., 2002; Richardson et al., 2004), as well human
phobics (Ressler et al., 2004). The inefficacy of D-cycloserine in
129S1 could further reflect usually strong resistance to extinction
in this strain and/or different molecular mechanisms driving the
behavior across different mouse stains. In this context, yohim-
bine, a compound with antagonist properties at �2-
adrenoreceptors among other effects, significantly improved
long-term extinction in 129S1, as previously seen in rats and
C57BL/6J mice (Cain et al., 2004; Morris and Bouton, 2007). This
demonstrates that impaired extinction in 129S1 can be at least
partially reversed, although the molecular mechanisms involved
remain to be determined.

Deficient fear extinction in 129S1 was associated with a strik-
ing alteration in the activation profile of a key prefrontal-
amygdala circuit mediating fear extinction. This was assayed via
expression of the IEG c-Fos, a surrogate marker for neuronal
activation (Singewald, 2007) and Zif268, an IEG that acts as a
transcription factor subserving fear memory (re)consolidation
(Davis et al., 2003; Lee et al., 2004). Consistent with the absence of
behavioral differences after fear recall or nonconditioned base-
line, IEG activation in IL (or any region examined) did not differ
between strains. In contrast, C57BL/6J showed significantly
greater extinction-related IEG activation than 129S1 in IL, and IL
activation showed a high correlation (�0.86) with freezing dur-
ing initial extinction recall. This suggests an extinction-related
failure to recruit IL in 129S1 mice, consistent with the important

role ascribed to IL in rodent extinction
(Herry and Mons, 2004; Quirk et al., 2006)
and homologous regions in human extinc-
tion (Phelps et al., 2004; Kalisch et al.,
2006; Milad et al., 2007).

Impaired fear extinction in 129S1 was
not associated with blunted IL activation
alone, but instead reflected a circuit level
failure. 129S1 showed lesser IEG expres-
sion than C57BL/6J in BLA (but not me-
dial or cortical amygdala subnuclei) after
extinction. They also showed lesser induc-
tion of Zif268, but not c-Fos, in LA. Al-
though the functional significance of this
subnuclei dissociation between the two
IEGs is not clear, it is in full agreement
with the finding of low Zif268, not c-Fos,
expression in the LA of poor extinguishing
C57BL/6J mice after extinction recall
(Herry and Mons, 2004) (see also Santini
et al., 2004). More generally, although LA
and BLA drive conditioned fear via CeA,
the contribution of these regions to extinc-
tion learning is only now being uncovered.
For example, whereas BLA lesions do not
affect extinction learning (Sotres-Bayon et
al., 2004; Anglada-Figueroa and Quirk,
2005), a subclass of LA/BLA neurons are

active and depotentiated during extinction (Repa et al., 2001;
Kim et al., 2007b). Furthermore, blockade of NMDARs or MAPK
signaling in BLA impairs fear extinction in rats and C57BL/6J
mice (Herry et al., 2006; Sotres-Bayon et al., 2007), and depoten-
tiation of conditioning-induced long-term potentiation in BLA
predicts successful extinction (for review, see Barad et al., 2006).
Together with current findings, this supports a role for LA/BLA,
likely working in concert with IL, in the acquisition and expres-
sion of fear extinction (see Note added in proof). As such, possi-
ble abnormalities in BLA neuronal depotentiation (BLA long-
term potentiation appears normal in these mice) (Schimanski
and Nguyen, 2005) or signaling in 129S1 will be an interesting
avenue for future study.

The ITC cell masses of the amygdala are posited to be another
important component of the extinction circuit (Paré et al., 2004).
These GABAergic neurons serve as an intra-amygdala relay sta-
tion exerting feedforward inhibition over CeA amygdala output
(Paré et al., 2004) (see Note added in proof). BLA and IL send
projections to the ITC cell masses (McDonald et al., 1996; Royer
et al., 1999; Vertes, 2002; Berretta et al., 2005). In the rat, IL
stimulation increases ITC c-Fos expression (Berretta et al., 2005)
and produced an associated inhibition of CeA neurons (Quirk et
al., 2003). In our mouse extinction paradigm, extinction was as-
sociated with strong Zif268 expression in the Imp and Ilp ITC
masses, and this correlated with levels of freezing during extinc-
tion. To our knowledge, this is the first demonstration of extinc-
tion induced ITC activation. However, unlike Berretta et al.
(2005) had, we did not see ITC c-Fos expression, possibly because
of relatively weaker IL stimulation by extinction than chemical
stimulation, or a species difference. Zif268 expression in ITCs
differed between strains. Curiously, however, there was relatively
greater activation of Imp (but not Ilp) in 129S1 than C57BL/6J.
Moreover, and as expected given the high fear during extinction
recall in 129S1, CeA c-Fos expression was markedly higher in
these mice relative to C57BL/6J. As such, the strain differences in

Table 1. Strain differences in c-Fos expression in cortical and amygdaloid regions after extinction recall

Baseline Extinction recall

129S1 C57BL/6J 129S1 C57BL/6J

Cortical regions
M1 (1.78 mm) 0.3 � 0.2 0.1 � 0.1 0.6 � 0.3 0.4 � 0.2
M2 (1.78 mm)* 0.9 � 0.2 0.8 � 0.4 0.8 � 0.2 0.6 � 0.2
Cg1 (1.78 mm) 2.0 � 0.3 0.6 � 0.3 9.8 � 1.1 9.3 � 0.5
Cg1 (1.54 mm)* 2.3 � 0.3 0.8 � 0.3 9.7 � 0.7 9.4 � 0.5
Cg2 (1.10 mm)* 3.1 � 0.5 2.0 � 0.5 12.3 � 0.9 11.3 � 0.7
PrL (1.78 mm)* 1.5 � 0.3 1.1 � 0.3 9.3 � 0.8 10.0 � 0.5
PrL (1.54 mm)* 2.0 � 0.3 1.0 � 0.2 10.9 � 0.8 11.6 � 0.3
IL (1.78 mm)* 1.6 � 0.3 1.6 � 0.3 6.8 � 0.4 11.9 � 0.5**
IL (1.54 mm)* 1.9 � 0.6 2.1 � 0.4 6.0 � 0.4 9.7 � 0.7**

Amygdala nuclei (all �1.58 mm)
LA* 0.9 � 0.3 0.8 � 0.3 2.7 � 0.5 2.8 � 0.3
BLA* 1.0 � 0.4 1.3 � 0.3 2.1 � 0.5 7.9 � 0.5**
CeA* 0.8 � 0.3 0.8 � 0.3 5.1 � 0.5 1.8 � 0.3**
Impa

Ilpa

MePD* 1.4 � 0.5 1.0 � 0.4 5.6 � 0.5 6.7 � 0.5
MePV* 4.8 � 0.5 4.8 � 0.3 8.3 � 0.5 8.3 � 0.4
ACo 5.9 � 1.1 6.3 � 0.7 10.6 � 0.6 10.0 � 0.6
PLCo* 2.9 � 0.6 3.3 � 0.9 8.1 � 0.7 7.4 � 0.4

129S1 mice had fewer c-Fos-positive cells in IL and BLA and more c-Fos-positive cells in CeA than C57BL/6J after extinction recall. No other cortical or
amygdaloid region examined differed between strains (n � 8 per strain). CS minus baseline c-Fos expression did not differ between strains baseline in any
brain region examined (n � 4 per strain). Data are mean � SEM c-Fos-positive cells per 0.01 mm2. M1, Primary motor; M2, secondary motor; Cg1, cingulate
area 1; Cg2, cingulate area 2; PrL, prelimbic; MePD, medial, posterodorsal; MePV, medial, posteroventral; ACo, anterior cortical; PLCo, posterolateral cortical.
aNo detectable expression.

*p � 0.01, extinction recall versus baseline; **p � 0.01, C57BL/6J versus 129S1/same condition.
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ITC recruitment are not easily reconciled with the aforemen-
tioned circuit model of extinction and raise the question of why
CeA activity in 129S1 is high in the face of both high ITC and low
BLA input. One possibility is that there may be other sources of
excitatory input to CeA that could be functionally aberrant in
129S1 mice (e.g., from posterior thalamic nucleus). Another pos-
sibility is that there is a network of functionally diverse ITC cells,
some signaling fear and others inhibiting CeA, and we are sam-
pling the former subpopulation. [For further discussion of these
possibilities, see Paré et al. (2004)]. Clearly, additional studies are
needed to fully elucidate the precise nature of the strain differ-
ences in extinction-related cortico-amygdala activation. Not-

withstanding, the main conclusion from the current data are that
impaired extinction in 129S1 is associated with a failure to prop-
erly recruit prefrontal and amygdala circuitry mediating this
behavior.

In summary, through a strain survey, we identified an inbred
mouse strain, 129S1, with a marked deficit in fear extinction. The
extinction deficit in this strain was dissociable from fear condi-
tioning and extinction of an instrumental appetitive behavior,
both of which were normal in 129S1. 129S1 were resistant to the
extinction facilitating effects of extended massed training and
treatment with D-cycloserine, but yohimbine treatment im-
proved long-term extinction. Analysis of neural activation after
extinction recall revealed hypoactivation of IL and BLA, differen-
tial activation of the ITCs, and hyperactivation of CeA in 129S1
relative to C57BL/6J. Although previous studies have produced
fear extinction deficits by neuroanatomical lesions, gene muta-
tions, and selected breeding, the 129S1 mouse is a naturally oc-
curring example of impaired fear extinction and cortico-
amygdala dysfunction in an animal model. This provides an
opportunity to study sources of genetic variation driving differ-
ences in extinction. More generally, given the increasing conver-
gence of rodent and human studies of emotional disorders and
extinction in particular (Holmes and Hariri, 2003; Phelps et al.,
2004; Milad et al., 2006; Cryan and Slattery, 2007; Ji and Maren,
2007), 129S1 mice could provide a useful model for studying the
pathophysiology and therapeutic alleviation of impaired fear ex-
tinction in anxiety disorders such as phobias and posttraumatic
stress disorder.

Note added in proof. At the time the current article was going to
press, two important studies were published further describing
the role of the amygdala and ITC masses in rodent fear extinction
(Herry et al., 2008; Likhtik et al., 2008).
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Table 2. Strain differences in Zif268 expression in cortical and amygdaloid regions after extinction recall

Baseline Extinction recall

129S1 C57BL/6J 129S1 C57BL/6J

Cortical regions
M1 (1.78 mm) 12.3 � 0.8 11.9 � 0.5 14.1 � 0.5 13.6 � 0.7
M2 (1.78 mm)* 12.6 � 0.7 12.2 � 0.7 22.8 � 0.6 23.9 � 0.8
Cg1 (1.78 mm) 14.3 � 0.6 13.6 � 0.9 22.0 � 0.8 23.6 � 0.8
Cg1 (1.54 mm)* 13.3 � 0.8 14.4 � 0.3 13.8 � 0.6 13.9 � 0,6
Cg2 (1.10 mm)* 17.4 � 1.6 16.5 � 0.9 20.7 � 0.8 20.1 � 0.3
PrL (1.78 mm)* 10.8 � 0.6 11.3 � 0.9 21.1 � 1.2 23.1 � 0.8
PrL (1.54 mm)* 11.3 � 0.6 13.1 � 0.6 23.1 � 1.1 22.3 � 0.6
IL (1.78 mm)* 6.8 � 0.5 5.8 � 0.5 9.7 � 0.6 16.6 � 0.7**
IL (1.54 mm)* 7.3 � 0.6 6.1 � 0.5 12.9 � 0.9 21.2 � 1.3**

Amygdala nuclei (all �1.58 mm)
LA* 6.5 � 0.8 6.0 � 0.6 13.6 � 0.9 20.6 � 0.8**
BLA* 3.9 � 0.5 4.3 � 0.2 7.6 � 1.3 13.6 � 0.6**
CeA* 1.5 � 0.3 1.7 � 0.6 3.1 � 0.1 2.9 � 0.4
Impa 30.5 � 1.7 29.0 � 0.9 75.1 � 3.9 41.4 � 2.4**
Ilpa* 21.1 � 5.1 18.5 � 1.8 41.3 � 3.9 41.2 � 2.6
MePD* 2.9 � 0.4 2.7 � 0.6 9.8 � 0.6 10.4 � 0.5
MePV* 10.8 � 0.8 10.5 � 0.8 13.8 � 1.2 13.8 � 0.9
ACo 11.0 � 1.1 10.8 � 0.9 11.3 � 0.9 11.8 � 0.8
PLCo* 9.4 � 1.1 10.3 � 1.2 16.8 � 0.6 18.0 � 1.0

129S1 mice had fewer Zif268-positive cells in IL, LA, BLA, and Imp than C57BL/6J after extinction recall. No other cortical or amygdaloid region examined
differed between strains (n � 7– 8 per strain). Baseline Zif268 expression did not differ between strains in any brain region examined (n � 4 per strain). Data
are mean � SEM Zif268-positive cells per 0.01 mm2. For each region, the abbreviation and plane of section relative to bregma is given in parentheses. M1,
Primary motor; M2, secondary motor; Cg1, cingulate area 1; Cg2, cingulate area 2; PrL, prelimbic; MePD, medial, posterodorsal; MePV, medial, posteroventral;
ACo, anterior cortical; PLCo, posterolateral cortical.
aWhole nucleus counted.

*p � 0.01, extinction recall versus CS minus baseline; **p � 0.01, C57BL/6J versus 129S1/same condition.

Table 3. Absence of strain differences in c-Fos or Zif268 expression in cortical and amygdaloid regions after fear
recall

c-Fos Zif268

129S1 C57BL/6J 129S1 C57BL/6J

Cortical regions
M1 (1.78 mm) 0.1 � 0.1 0.1 � 0.1 25.8 � 1.0 26.0 � 1.0
M2 (1.78 mm) 4.9 � 0.4 4.6 � 0.4 28.9 � 1.0 27.9 � 1.2
Cg1 (1.78 mm) 7.5 � 0.7 7.6 � 0.6 28.6 � 0.9 29.1 � 0.7
Cg1 (1.54 mm) 9.5 � 0.7 9.4 � 0.6 29.3 � 1.1 30.2 � 0.8
Cg2 (1.10 mm) 13.0 � 0.8 12.5 � 0.4 36.5 � 1.3 35.9 � 0.7
PrL (1.78 mm) 11.3 � 0.9 11.6 � 0.6 27.4 � 0.7 27.7 � 1.0
PrL (1.54 mm) 13.0 � 1.0 13.7 � 0.7 31.4 � 1.3 33.6 � 1.0
IL (1.78 mm) 2.9 � 0.5 2.4 � 0.4 9.1 � 0.5 9.7 � 0.6
IL (1.54 mm) 4.2 � 0.3 3.8 � 0.3 11.0 � 0.7 11.6 � 0.6

Amygdala nuclei (all �1.58 mm)
LA 2.7 � 0.3 2.5 � 0.3 32.4 � 1.3 32.0 � 0.7
BLA 7.6 � 0.5 6.6 � 0.3 15.2 � 0.8 14.1 � 0.8
CeA 4.9 � 0.4 5.1 � 0.3 8.0 � 0.3 8.2 � 0.4
Impa ND ND 39.0 � 1.2 36.9 � 1.2
Ilpa ND ND 38.4 � 1.1 37.2 � 1.1
MePD 4.8 � 0.6 4.9 � 0.5 15.0 � 0.4 14.2 � 0.6
MePV 8.8 � 0.5 8.0 � 0.4 22.2 � 1.1 19.6 � 0.5
ACo 9.4 � 0.8 8.6 � 0.6 26.2 � 0.9 26.3 � 1.3
PLCo 10.9 � 1.1 10.6 � 0.8 27.4 � 1.3 28.2 � 1.1

129S1 and C57BL/6J mice did not differ in c-Fos- or Zif268-positive cells in any brain region examined (n � 10/strain). Data are mean � SEM c-Fos- and
Zif268-positive cells per 0.01 mm2. For each region, the abbreviation and plane of section relative to bregma is given in parentheses. M1, Primary motor; M2,
secondary motor; Cg1, cingulate area 1; Cg2, cingulate area 2; PrL, prelimbic; MePD, medial, posterodorsal; MePV, medial, posteroventral; ACo, anterior
cortical; PLCo, posterolateral cortical; ND, no detectable expression.
aWhole nucleus counted.
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